Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0239784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991635

RESUMO

The Southwest Pacific represents an independent biogeographic province for deep-sea hydrothermal vent fauna. Different degrees of genetic connectivity among vent fields in Manus, North Fiji and Lau Basins have been reported for various molluscan and crustacean species, presumably reflecting their different levels of dispersal ability as swimming larvae. The present study investigates the population connectivity of the hydrothermal vent limpet Shinkailepas tollmanni (family Phenacolepadidae) in the Southwest Pacific. Our analyses using mitochondrial COI-gene sequences and shell morphometric traits suggest a panmictic population structure throughout its geographic and bathymetric ranges, spanning 4,000 km from the westernmost Manus Basin (151ºE; 1,300 m deep) to the easternmost Lau Basin (176ºE; 2,720 m). The measurements of its embryonic and larval shells demonstrate that the species hatches as a planktotrophic veliger larva with an embryonic shell diameter of 170-180 µm and settles at the vent environment with the larval shell diameter of 750-770 µm. This substantial growth as a feeding larva, ca. 80 times in volume, is comparable or even greater than those of confamilial species in the hydrothermal-vent and methane-seep environments in the Northwest Pacific and Atlantic Oceans. Large pigmented eyes in newly settled juveniles are another common feature in this and other phenacolepadids inhabiting the chemosynthetic environments. These results put together suggest that the larvae of S. tollmanni migrate vertically from deep-sea vents to surface waters to take advantages of richer food supplies and faster currents and stay pelagic for an extended period of time (> 1 year), as previously indicated for the confamilial species.


Assuntos
Gastrópodes/genética , Fontes Hidrotermais , Distribuição Animal , Animais , Biomassa , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/fisiologia
2.
Ecology ; 98(6): 1524-1534, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28273353

RESUMO

Larval dispersal significantly contributes to the geographic distribution, population dynamics, and evolutionary processes of animals endemic to deep-sea hydrothermal vents. Little is known as to the extent that their larvae migrate vertically to shallower waters and experience stronger currents and richer food supplies. Here, we first provide evidence from early life-history traits and population genetics for the surface dispersal of a vent species. Planktotrophic larvae of a red blood limpet, Shinkailepas myojinensis (Gastropoda: Neritimorpha: Phenacolepadidae), were cultured to observe their swimming behavior and to evaluate the effects of temperature on survival and growth. In addition, the population structure was analyzed based on 1.2-kbp mitochondrial DNA sequences from 77 specimens that cover the geographic and bathymetric distributions of the species (northwest Pacific, 442-1,227 m in depth). Hatched larvae constantly swam upward at 16.6-44.2 mm/min depending on temperature. Vertical migration from hydrothermal vents to the surface, calculated to take ~4-43 d, is attainable given their lengthy survival time without feeding. Fed larvae best survived and grew at 25°C (followed by 20°C), which approximates the sea surface temperature in the geographic range of the species. Little or no growth was observed at the temperature of the vent habitat where adult limpets occur (≤15°C). Population genetic analyses showed no differentiation among localities that are <1,350 km apart. The larvae of S. myojinensis most likely migrate to the surface water, where high phytoplankton biomass and strong currents enable their growth and long distance dispersal over many months. Sea surface temperature may represent a critical factor in determining the geographic distribution of many vent endemic species with a planktotrophic early development, and in turn the faunal composition of individual vent sites and regions.


Assuntos
Gastrópodes/fisiologia , Fontes Hidrotermais , Larva/fisiologia , Animais , Ecossistema , Genética Populacional
3.
Zootaxa ; 3893(1): 101-13, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25544513

RESUMO

A new species of the alvinocaridid shrimp genus Alvinocaris Williams & Chace, 1982 is described from the Solitaire hydrothermal vent field at 2606 m depth on the Central Indian Ridge. Alvinocaris solitaire sp. nov., the first species of the genus to be recorded from the Indian Ocean, is morphologically most similar to A. lusca Williams & Chace, 1982 from the Galapagos Rift, East Pacific Rise. The new species is distinguished from A. lusca by the less produced pterygostomial angle of the carapace, the presence of small teeth on the posterolateral margin of the third pleuron, and the lack of short plumose setae on the posteromedian margin of the telson. The genetic divergence of the mitochondrial cytochrome c oxidase subunit I (COI) gene (600 bp) among the nine Alvinocaris species analyzed clearly indicates that the new taxon is distinct from the congeneric species for which genetic data are available.


Assuntos
Decápodes/anatomia & histologia , Animais , Decápodes/classificação , Decápodes/genética , Feminino , Oceano Índico , Masculino , Filogenia
4.
PLoS One ; 8(12): e81570, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358117

RESUMO

Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.


Assuntos
Distribuição Animal , Decápodes , Gastrópodes , Fontes Hidrotermais , Animais , Ecossistema , Meio Ambiente , Genética Populacional , Oceano Índico , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...